Bundle Pricing with Comparable Items
نویسندگان
چکیده
We consider a revenue maximization problem where we are selling a set of items, each available in a certain quantity, to a set of bidders. Each bidder is interested in one or several bundles of items. We assume the bidders’ valuations for each of these bundles to be known. Whenever bundle prices are determined by the sum of single item prices, this algorithmic problem was recently shown to be inapproximable to within a semi-logarithmic factor. We consider two scenarios for determining bundle prices that allow to break this inapproximability barrier. Both scenarios are motivated by problems where items are different, yet comparable. First, we consider classical single item prices with an additional monotonicity constraint, enforcing that larger bundles are at least as expensive as smaller ones. We show that the problem remains strongly NP-hard, and we derive a PTAS. Second, motivated by real-life cases, we introduce the notion of affine price functions, and derive fixed-parameter polynomial time algorithms.
منابع مشابه
Latent Variable Copula Inference for Bundle Pricing from Retail Transaction Data
Bundle discounts are used by retailers in many industries. Optimal bundle pricing requires learning the joint distribution of consumer valuations for the items in the bundle, that is, how much they are willing to pay for each of the items. We suppose that a retailer has sales transaction data, and the corresponding consumer valuations are latent variables. We develop a statistically consistent ...
متن کاملOptimal bundle pricing for homogeneous items
We consider a revenue maximization problem where we are selling a set of m items, each of which available in a certain quantity (possibly unlimited) to a set of n bidders. Bidders are single minded, that is, each bidder requests exactly one subset, or bundle of items. Each bidder has a valuation for the requested bundle that we assume to be known to the seller. The task is to find an envy-free ...
متن کاملOptimal bundle pricing with monotonicity constraint
We consider the problem to price (digital) items in order to maximize the revenue obtainable from a set of bidders. We suggest a natural monotonicity constraint on bundle prices, show that the problem remains NP-hard, and we derive a PTAS. We also discuss a special case, the highway pricing problem.
متن کاملThe Power of Uncertainty: Bundle-Pricing for Unit-Demand Customers
We study an extension of the unit-demand pricing problem in which the seller may offer bundles of items. If a customer buys such a bundle she is guaranteed to get one item out of it, but the seller does not make any promises of how this item is selected. This is motivated by the sales model of retailers like hotwire.com, which offers bundles of hotel rooms based on location and rating, and only...
متن کاملOn the hardness of pricing loss-leaders
Consider the problem of pricing n items under an unlimited supply with m buyers. Each buyer is interested in a bundle of at most k of the items. These buyers are single minded, which means each of them has a budget and they will either buy all the items if the total price is within their budget or they will buy none of the items. The goal is to price each item with profit margin p1, p2, ..., pn...
متن کامل